Chapter 4 Transformations

Ch 4.1 Translations

Vocabulary

Transformation: _____

Vector:

Translation:

Isometry:

Definition of Translation:

Graph:

The vertices of \triangle ABC are A(0, 3), B(2, 4), and C(1, 0). Translate \triangle ABC using vector <5, -1>.

Translation Vector

Component Form

Translation Rule

$$< t - 1, 2t^2 >$$

Graph:

Pre-image: A(1, -2), B(1, 0), C(3, 1), D(4, -3)

Rule: (x, y) -> (x-5, y+3)

Composition of Transformations:

Composition Theorem

Is this a translation? Why or why not?

Ch 4.2 Reflections

Vocabulary

Reflection:	 	 	
Line of Reflection:			

Definition of Reflection:

Graph:

Reflect the pre-image about the:

- a) x-axis
- b) y-axis

Graph:

Pre-image: A(1, 3), B(5, 2), C(2, 1) Reflect about the line:

(a) x = 5

(b) y = 4

Challenge:

make a rule for (a)

Graph:

Pre-image: A(1, 3), B(5, 2), C(2, 1) Reflect about the line: y = x

Rules of Reflection

Line of Reflection	Rule
across the x-axis	
across the y-axis	
across the line y = x	
across the line y = -x	

Reflection Postulate	
Glide Reflection:	P"

Graph:

Pre-image: A(1, 3), B(5, 2), C(2, 1) Perform a glide reflection using: Translation $(x, y) \rightarrow (x+5, y-1)$ Reflect around x = 3

Vocabulary

Line Symmetry:

Line of Symmetry:

point P not on m

point P not on m

Problem Solving - Water line

Lines of Symmetry

How many lines of symmetry does each figure have?

Ch 4.3 Rotations

Rotation: _____

Definition of Rotation:

Is this a rotation?

A)

B)

C)

Rules of Rotation

Rotation about the origin	Rule
rotation of 90°	
rotation of 180°	
rotation of 270°	

Graph:

Pre-image: R(3, 1), S(5, 1), T(5, -3), U(2, -1) Graph the image rotated 270° about the origin.

Rotation Postulate		E F' B' D'
--------------------	--	------------

Graph composite:

segment R(1, -3), S(2, -6) Reflection: around the y-axis Rotation: 90° about the origin

Vocabulary

Rotational Symmetry: _____

Center of Symmetry:

Does each figure have rotational symmetry?

a. parallelogram

b. regular octagon

c. trapezoid

Application - London Eye

Observation wheel radius = _____

One rotation takes _____ minutes

If car starts at ______, what is car's location after

_____ minutes?

Ch 4.4 Congruence and Transformations

Vocabulary

Congruent Figures:

Congruence Transformation:

Solve:

Identify congruent figures in the diagram, and determine the rigid motions (isometries) that were used.

Describe a congruence transformation that maps \triangle ABCD to \triangle EFGH.

Reflections in Parallel Lines
Theorem

Solve:

In the diagram, a reflection in line k maps GH to G'H'. A reflection in line m maps G'H' to G''H''. Also, HB = 9 and DH'' = 4.

a. Name any segments congruent to: GH, HB, and GA.

b. Does AC = BD?

c. What is the length of GG"?

Reflections in Intersecting Lines Theorem

Solve:

In the diagram, the pre-image is reflected in line k, then in line m. Describe a single transformation that maps the blue figure onto the green figure.

Scale Factor:

Cn 4.5 Dilations	
Vocabulary	P
Dilation:	C
Dilation is/is not a rigid motion. Why?	R'
Definition of Dilation:	

When scale factor ______, the dilation is an _______.

When scale factor ______, the dilation is a _______.

Rule of Dilation:

Graph the dilation:

Pre-image is K(-3, 6), L(0, 6), M(3, 3), and N(-3, -3).

Scale factor $k = \frac{1}{3}$

Graph the dilation:

Pre-image is F(-4, -2), G(-2, 4), and H(-2, -2)

Scale factor $k = -\frac{1}{2}$

Problem solving:

You are using a magnifying glass that shows the image of an object that is _____ times the object's actual size. Determine the length of the image of the spider seen through the magnifying glass.

Ch 4.6 Similarity and Transformations

Vocabulary

Similar Geometries: _______
Similarity Transformation: ______

Definition of Similar Figures:

Perform a Similarity Transformation

Graph \triangle ABC with vertices A(-4, 1), B(-2, 2), and C(-2, 1) and its image after the similarity transformation.

Translation: $(x, y) \rightarrow (x + 5, y + 1)$

Dilation: $(x, y) \rightarrow (2x, 2y)$

Describe a Similarity Transformation

Describe transformation(s) that maps trapezoid PQRS to trapezoid WXYZ.

Prove two squares are similar

Given Square *ABCD* with side length r, square *EFGH* with side length s, $\overline{AD} \parallel \overline{EH}$

Prove Square *ABCD* is similar to square *EFGH*.

<u>Statements</u> <u>Reasons</u>